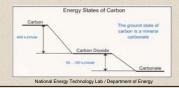

# OPTIMIZATION OF THE MINERAL ACTIVATION PROCESS TO SEQUESTER CO. AT LOW PRESSURES AND TEMPERATURES

PENNSTATE

M. Mercedes Maroto-Valer<sup>1</sup>, Matthew E. Kuchta<sup>1</sup>, Yinzhi Zhang<sup>1</sup>, John M. Andrésen<sup>1</sup>, and Daniel J. Fauth<sup>2</sup>

<sup>1</sup>The Department of Energy and Geo-Environmental Engineering and The Energy InstituteThe Pennsylvania State University, University Park, PA 16802

<sup>2</sup>U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA 15236




# Introduction

A 30% increase in atmospheric CO<sub>2</sub> concentrations has occurred since the Industrial Revolution, and concentrations continue to rise. Mineral carbonation is a promising CO<sub>2</sub> sequestration technology that involves the reaction of CO<sub>2</sub> with non-carbonate minerals to form stable mineral carbonates. Serpentine has been identified as a suitable feedstock, and the reaction is shown below

$$Mg_3Si_2O_5(OH)_4 + 3CO_2 \rightarrow 3MgCO_3 + 2SiO_2 + 2H_2O$$

Advantages of the carbonation of serpentine minerals include the vast, readily available abundance of raw materials, the permanent storage of CO2 as a stable mineral carbonate, and the overall process being exothermic, and therefore potentially economically viable.



# Mineral Sequestration Obstacles

¥Kinetics - Innovative development of fast reaction routes under milder regimes in a continuous integrated process must be made

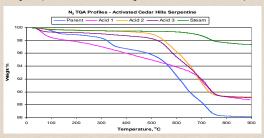
♣Carbonation Efficiency - Current carbonation studies require prior capture of the CO₂, high pressures, and extensive mineral particle communition, all energy-intensive operations.

**The Active Carbonation Concept** \*Promote and accelerate REACTION RATES and EFFICIENCIES through surface activation to the extent that extensive mineral particle communition is not required prior to sequestration.

\*Surface activation by catalytic and physical means to accelerate the carbonation reaction efficiency.

\*Physical activations were performed using steam, while chemical activations utilized various acids at room temperature.

# **BET Surface Area and Porosity Studies**


¥N₂ at 77K adsorption isotherms were obtained using a Quantachrome adsorption apparatus, Autosorb-1 Model ASIT.

| Sample | BET Surface<br>Area (m²/g) | Pore Volume<br>(mL/g) | Average Pore<br>Diameter (nm) |
|--------|----------------------------|-----------------------|-------------------------------|
| Parent | 8.2                        | 0.017                 | 8.5                           |
| Steam  | 15.8                       | 0.035                 | 8.8                           |
| Acid 1 | 329.5                      | 0.234                 | 2.8                           |
| Acid 2 | 79.5                       | 0.085                 | 4.3                           |
| Acid 3 | 121.7                      | 0.097                 | 3.2                           |

- ♣The surface area of the activated sample increased at least one order of magnitude for all the activated serpentines.
- ♣The chemical activation appears to be more effective than physical activation in terms of increasing surface area and pore volume, while reducing the average pore diameter

### TGA Studies

¥N₂ TGA profiles were obtained using a Perkin Elmer TGA 7 at a temperature range of 25°C to 900°C at 10°C/minute.



- ♣The weight loss in the parent sample (~15%wt) is attributed to the removal of hydroxyl groups that inhibit the carbonation reaction by occupying active sites on the mineral surface.
- ♣The chemically activated samples show a weight loss of around 11%wt and the loss is shifted to higher temperatures, indicating that the activation process selectively removed low-temperature (<600°C) hydroxyl
- 4The physically activated sample shows a weight loss of around 3%wt, indicating that most of the water has been removed during activation.

Serpentine samples after carbonation

#### **Carbonation Studies**

\*High temperature and pressure analyses were carried out in a 1 L Hastelloy C-2000 continuous-stirred-tank-reactor (CSTR) unit, while low temperature and pressure carbonation reactions were performed in a 500 mL Hastelloy C-276 CSTR vessel.

| Sample                | Conversion<br>Percentage | Carbonation Reaction<br>Conditions<br>(Temperature, Pressure) |
|-----------------------|--------------------------|---------------------------------------------------------------|
| Untreated             | 7.2                      | 155°C, 126 atm                                                |
| Steam (650°C)         | 59.4                     | 155°C, 126 atm                                                |
| Chemically<br>Treated | 52.5                     | 20°C, 45 atm                                                  |

- ♣The samples underwent varying degrees of carbonation
- ♣The untreated parent sample underwent a 7% conversion at 155°C and 126 atm. Under identical conditions, the steam activated serpentine underwent a 60% conversion, illustrating the benefit of removing moisture from the serpentine. However, high temperature treatment is very energy intensive.
- **♦**CO₂ was also sequestered during the carbonation of the acid treated serpentine at much lower temperatures and pressures (20°C and 45atm)

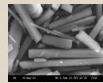
# **SEM and XRD Studies**

≠SEM studies were conducted using a HiTACHI S-3500N, with an accelerating voltage of 20kV and a magnification of 1500X.

\*XRD analyses were carried out on a Scintag Pad V unit with a vertical theta/2-theta goniometer.

Serpentine samples prior to carbonation




Untreated parent serpentine

XRD: antigorite, forsterite



Acid treated serpentine XRD: antigorite, amorphous XRD: magnesite, antigorite





XRD: magnesite, nesquehonite

- #Images show that the structure of the activated serpentines has been significantly altered by the treatment process.
- The product from the carbonation of the steam activated serpentine (SCP-4) shows MqCO, cube-shaped crystals.
- ♣The carbonation product from the acid treated serpentine shows MgCO₃ crystals with a much longer, rod-like appearance.

### **Conclusions**

- ♣The obstacles inhibiting mineral carbonation may possibly be overcome by activating the raw minerals to accelerate the carbonation
- ★Chemical activation appears to be the preferred method to increase surface area (330m²/g, compared to only 8m²/g for the raw serpentine), while physical activation results in a greater weight loss.
- ∔The most promising results came from the carbonation of the H₂SO₄ treated serpentine , where a carbonation efficiency of nearly 53% was observed, comparable to the physically activated serpentine that showed a 60% conversion at 155°C under 126 atm of CO<sub>a</sub> pressure
- A provisional patent (Serial No: 60467,809) has been filed and a full patent is currently being filed.

#### **Future Work**

- ♣Optimization of the activate carbonation conditions.
- ♣.Development of a continuous CO₂ sequestration module.
- Conduct a preliminary economic assessment of the active carbonation process

# Acknowledgements

The authors wish to thank the Department of Energy (University Coal Research Program, grant number DE-FG2601-NT41286 Phases I and II), the Department of Energy and Geo-Environmental Engineering, and the Energy Institute for supporting this work. The authors are also grateful to Y. Soong and D. Fauth from the DOE/NETL and W. O'Connor from Albany Research Center for providing samples and helpful discussions